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Abstract

The steady laminar flow and heat transfer of a second grade fluid over a radially stretching sheet is considered. The axisymmetric flow
of a second grade fluid is induced due to linear stretching of a sheet. The heat transfer analysis has been carried out for two heating
processes, namely (i) with prescribed surface temperature (PST-case) and (ii) prescribed surface heat flux (PHF-case). Introducing the
dimensionless quantities the governing partial differential equations are transformed to ordinary differential equations. The developed
non-linear differential equations are solved analytically using homotopy analysis method (HAM). The series solutions are developed
and the convergence of these solutions is explicitly discussed. The analytical expressions for velocity and temperature are constructed
and are shown graphically. The numerical values for the skin friction coefficient and the Nusselt number are entered in tabular form.
Attention has been focused to the variations of the emerging parameters such as second grade parameter, Prandtl number and the Eckert

number. Finally, comparison between the HAM and numerical solutions are also included and found in excellent agreement.

© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, the viscoelastic fluids are recognized
more appropriate than Newtonian fluids. This is due to
their many practical applications in petroleum drilling,
manufacturing of foods and paper and many other activi-
ties. Specifically, the boundary layer concept of viscoelastic
fluids is of special importance owing to its application in
many engineering problems, among which we cite the pos-
sibility of reducing frictional drag on the hulls of ships and
submarines. Further, flow and heat transfer phenomena
over stretching surface has promising applications in a
number of technological processes including production
of polymer films or thin sheets. Because of the non-linear
nature of the dependence of stresses on the rate of strain
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for viscoelastic fluids, the solutions of flow problems for
these fluids are in general more difficult to obtain. This is
not only true of analytical solutions but even of numerical
solutions. Due to these facts, the flows of viscoelastic fluids
have been a challenging research topic for mathematicians,
physicists and engineers alike.

A literature survey indicated that there has been an
extensive literature available regarding the boundary layer
flow over a planer stretching sheet in various situations.
Such studies include different fluid models, magnetohydro-
dynamic and hydrodynamic cases, with and without heat
transfer analysis. As can be seen from the literature, there
has been relatively scarce information regarding the axi-
symmetric flow over a radial stretching sheet. Recently,
Atriel [1] discussed the axisymmetric flow of a second grade
fluid past a stretching sheet. He found exact, perturbative,
asymptotic and numerical solutions for the problem. To
the best of our information not a single attempt is available
in the literature which describes the axisymmetric flow and
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heat transfer analysis over a radial stretching sheet. This
study will help to fill this gap. The layout of the paper
has been organized as follows:

We start our formulation in Section 2 by defining the
continuity, momentum, constitutive equations and bound-
ary conditions in the cylindrical coordinates. In Section 2.1,
we find the analytic solution for the velocity using HAM
[5-21]. The expression for the skin friction coefficient is
also given in Section 2.2. The energy equation for the ther-
modynamic second grade fluid is presented in Section 3.
Sections 3.1 and 3.2 respectively deal with the boundary
conditions and HAM solutions of the temperature distri-
bution for the prescribed surface temperature case and
the prescribed heat flux case. In Section 4, we show the
convergence of the solution and the behaviour of the con-
vergence on the emerging parameters. In Section 5 the
results relevant to the graphs are presented beside the com-
parison of the HAM results with the numerical results of
[1]. Section 6 synthesis the concluding remarks.

2. Flow analysis

Consider the steady laminar flow of a second grade fluid
over a radial stretching sheet. The sheet is in the plane z =0
and has stretched velocity proportional to the distance
from the origin. The fluid occupies the half space z > 0.
The constitutive equation for the Cauchy stress in a second
grade fluid is [2-4]

T = —pl + uA; + oAy + 0,A7, (1)
where the first two kinematic tensors A; and A, are

A =VV+ (W),
dA, (2)

Az:d—+A1(VV) (VV) Ay,

in which V is the fluid velocity, d/dz is the material deriva-
tive and o; and o, are respectively the viscoelasticity
and cross-viscosity of the fluid. In order to satisfy the ther-
modynamic analysis, the conditions u >0, o =0,
o+ o= 0 must hold.

For the mathematical modelling, we take cylindrical
polar coordinate system (r, 6, z) when flow occurs under
the rotational symmetry. Thus all physical quantities do
not depend upon 0 i.e. 3/00 = 0 and azimuthal component
(v) of velocity V' = (u,v, w) vanishes identically. With these
facts the equations which govern the flow are
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and u and w are the velocities in the r- and z-directions,
respectively and p is the fluid density.
The relevant boundary conditions are

u=Br, w=0, atz=0,

(10)

u—0 asz— oo.

Let us introduce the following dimensionless quantities

w=Brf(n), w=—2VEuf(n), n:\/’; K=tn

(11)

where the prime signifies differentiation with respect to
and B is the proportionality constant relating to the
stretching of the sheet. The mass conservation equation is
automatically satisfied and Eqgs. (4) and (9) give the follow-
ing expression for pressure

—2Buf' 4 2KuB | 2ff" + 3% +

B,
p = —2Buf* —f 1+ po,

(12)

where p, is a constant and the ordinary differential equa-
tion for velocities [1]

f/l/ _f/2 4 2ff/l _ K(f//z _ 2f/f/// 4 2fftb) — 07 (13)
The boundary conditions (10) now become
=0, f'=1 atn=0,

14
f'—0 asn— oco. (14)
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The non-linear differential Eq. (13) governing the flow
has to be solved subject to the conditions (14) by HAM.

2.1. Homotopy analytic solution

Here, we obtain the analytic and uniformly valid solu-
tion by HAM. For that we use the initial approximation

Son) =1 —e™ (15)
and the auxiliary linear operator

L) ="+ 1", (16)
satisfying

L[Cin+ Cr+ C3e" =0, (17)

where C; (i = 1-3) are constants.
The deformation problem at the zeroth-order satisfies

(1 =p)Zilf(n,p) = fo(n)] = pla A1 [f (n. p)], (18)
f(ovp) =0, f/(ovp) =1, f/(OO,p) =0, (19)

where 7; and p €[0,1] are respectively the auxiliary and
embedding parameters and

asf(n,p) af(r],p) : 62f(r],p)
RUE —< o ) +2f('1,p)67’72
x <@f<w>> L,/ .p) O (.p)
on? on o

o*f(n,p)
TT‘}’ (20)

JVI [f(’/lap)] =

+2f(n,p)

is the non-linear differential operator. Forp =0and p =1,
we have

f(H,O) :fO(rI)7 f(rlv 1) :f(ﬂ) (21>

We note from above equation that the variation of p from 0
to 1 is continuous variation of f{n, p) from fy(n) to f(n). Due
to Taylor’s theorem and Eq. (21) we can write

Fonp) = i)+ 3l (22)
in which
1) =y €9

Clearly, the convergence of the series (22) depends on the
auxiliary parameter %;. Assume that 7, is selected such that
the series (22) is convergent at p = 1, then due to Eq. (21)
we have

)+ ifm(n)- (24)

Differentiating m-times the zeroth-order deformation
Eq. (18) with respect to p and then dividing them by m!
and finally setting p = 0 we have the mth-order deforma-
tion problem

L) = ToSon1 ()] = B 22, (), (25)
fm( ) :fr:l(()) :fr;(oo) =0, (26)
() = [y +szm1kk_rnlkﬁ

_K(fm 1-k k 2fm 1-k km + 2fmflfk kiv)]3 (27)
B 0, m<1, (28)
=1, oms 1.

For the solution of the mth-order problem, we use the
symbolic computation software MATHEMATICA up to
first few order of approximation. It is found that the solu-
tion of this problem is

m+1 m+1-—n

L) =32 Y dfe™, m = 0. (29)

n=0 k=0

In order to obtain the recurrence formulae for the coef-
ficients af, , of f,(n), we substitute Eq. (29) in Eq. (25) and
obtainform > 1,0<n<m+land 0<g<m+1—n

m
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m
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m+1
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= YmXom— kam it Z qjmllulk? I<k<m+1, (33)

q=k—1
m+1-—n
af;,n = melm+lfnfkalnc1—l,n + Z lIl?nﬂl”Z,k’
q=k

2<n<m+1, 0<k<m+1—n, (34)

where
—k+2

:utli,k (q k|+ ) ’ 0<k q+ 1 q = 0; (35)
I &

n.k k'( 1)(1 k+1
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The coefficient ¥ , is defined by

qjqn :hl[Xm n— q+2d31 1,n

{26')1 n m n - K(Aq - 2Fq + ZQZI i‘l)}] (37)
where the coefficients o7, ,, 4%, A, 'l and Qf  form >

1,0<n<m+1,0<q<m+1—nare

m—1 min{nk+1} min{g,k+1-/}

5:]nn Z Z Z cl;/a?n 11 kn—jo (38)
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3
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[/ — —i
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k=0 j=max{0,n—m+k} i=max{0,g—m+k+n—j}
m—1 min{nk+1} min{q.k+1-/}
[ — i q—i
Qm,n - § : E : ek/am 1—kn—j> (42)
k=0 j=max{0,n—m+k} i=max{0,q—m+k-+n—j}

and the coefficients 5" dk and & are

mn> mn’

by, = (k+ 1)y — nd, ,, (43)
oy = (k+ )b"“ —nbt (44)
dy,, = (k+1)ckt) —neh, (45)

= (k+1)d') —nd),,. (46)

For the detailed procedure of deriving the above relations
the reader is referred to [11]. With the above recurrence for-
mulae, we can calculate all coefficients afn‘n using only the

first two
a&o =1, ag‘l =-1, (47)

given by the initial guess approximations for the function
fin) in Eq. (15). The corresponding Mth-order approxima-
tion of Egs. (13) and (14) is then given by

m+1—n

D ) Zamo+Ze <Z > amm> (48)
m=0 m=0 m=n—1

The explicit, totally analytic solution of the present flow
is

fln) = me(n)
m=0
g[S e ()]
m=0 n=1 m=n—1 k=0

(49)
2.2. Skin friction

The expression for shear stress 7, on the surface of the
stretching sheet is defined as

Tw = Tr2|z:0 (50)

and the local skin friction coefficient or frictional drag coef-
ficient is
T
Cr=—=—. (51)
3p(Br)
In terms of dimensionless variables we have

Cr = 2Re, ' [f"(n) + 2KL21"(n) /" (n) — £ ()" (0) 1] ,—o-
(52)

where Re, = Br?/v is the local Reynolds number based on
the length scale r.

3. Heat transfer analysis

The energy equation, corresponding to the axisymmetric
flow of a second grade fluid is
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In above equation T is the temperature, c, is the specific
heat and k is the thermal conductivity. The boundary con-
ditions depend on the heating process.

3.1. The prescribed surface temperature ( PST case)
Here
r 2
T:TW:TDO+A<7) atz=0,

T— T, asz— oo,
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where A and / are constants. Defining
T-T,
0(n) =

—_— 55
Ty — T’ (33)
the governing problem is of the following form

0" +%0+Pr[(2f@’ —21'0)
/1. 12 ) el il 24 ! ol

el k(- -] <o

(56)

0=1

0—0 asn— oo, (57)

where Pr= uc,/k, E :lez/cpA and &= Br*/v are the

Prandtl number, Eckert number and the local Reynold
number, respectively.

atn =0,

3.1.1. HAM solution
Here the initial guess approximation of 6(n) and the cor-
responding auxiliary operator are respectively selected as

Oo(n) =€, (58)
D) =1"+1, (59)
where

LH[Cs+ Cse7™" =0, (60)

and C4 and Cs are arbitrary constants.
The zeroth-order problem is

90('7)] :ph2'/1/'2[9(’7ap>7f('77p)]7 (61)
9(oo,p) =0, (62>

(1—=p)ZL-[0(n,p) —
9(07p) = 1,

with the non-linear differential operator ./, of the follow-
ing form:
JVZ[Q(’Lp)vf(’/Iap)]

*0(n,p) 4
- - Pr
o + 5 0(n,p) +

2f(n,p) 60(@11],‘17)
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88 g of (0202
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+K o ( o o’ —2f(’lyp)67,73
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in which 7, is auxiliary nonzero parameter. For p = 0 and
p =1, we have

0(n,0) = 0o(n),  0(n, 1) = 0(n). (64)

Obviously as p increases from 0 to 1, 0(n,p) varies from
Oo(1n) to O(n). By Taylor’s theorem and Eq. (64), we have

6(’7 p - 00 + Z Qm ) (65)

where
1 8"0(n,p)
m!  Op”

and convergence of series (65) depends on /,. Assume that
7, is selected such that the series (65) is convergent at p =1,
then due to Eq. (64) we can write

)+ Z 0, (67)

The mth-order deformation problem is

QM('/I) =

(66)

p=0

1) = 0o(n

Lr[0w(1) = 201 (1)] = M2 (), (68)
0, (0) = 0,,(c0) =0, (69)
where

" 4
Ry (1) = 0, (1) + 501 (1)

m—1
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k=0
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12
=2f kz < k—L. 1”/ + 5f1:1f1”)> }1 (70)

The solution of the above problem can be expressed as

2fmflfk0;c - 2f;;71—k9k

m+2 m+2—n

=> > A e, m=0. (71)

n=0 ¢=0

Upon making use of the expression given in Eq. (71)
into Eq. (68) yields the following recurrence formulae for

the coefficients 47 , of 0,,(n):
form=1,0<n<m+2and0<g<m+2—n
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q q q q q
The coefficients I1, ,, A7 . V%,. kb, and of  where

m=1,0<n<m+2,0< q<m+2—naredeﬁnedby
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k/mlknj7

m—1  min{nk+2} min{qk+2—/}
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min{z,/+1—}

1—i
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i=max{0,s—k+I+r—j+1}

where the related coefficients B, , and Cﬁm are given by
mn (k + )Ak+1 - nA]r:t n’ (83)
=(k + 1)B! —nBE . (84)

Using the above recurrence formulae, we can calculate
all coefficients 4, , using only the first two

Ayg =0, 45, =1, (85)

given by the initial guess approximations for the function ¢
(n) in Eq. (58). The corresponding Mth-order approxima-
tion of Egs. (56) and (57) is

M M+2 M+1 m+2-n
Z Qm Z e ( Z Z Am WM ) (86>
m=0

m=n—1
Therefore the explicit, totally analytic solution of the
heat transfer in the PST case

(e @

m=n—1

and the dimensionless temperature gradient at the wall is
given by

~3°6,(0) = lim

m=0

D)

n=1 m=n—1

[Mﬂ M+1

m,n mn ] : (88>

The dimensionless heat transfer rate at the wall, charac-
terized by the Nusselt number Nu, is given by
7k8T

a
Nu = 20y =

W) —Re!?0'(0) (89)

and the local heat flux can be expressed as

T G)2\/€9’(0). (90)

The expressions in Egs. (87) and (89) are evaluated for the
different values of the emerging parameters and are dis-
cussed. We will now discuss the case of the prescribed heat
flux in the next subsection.

z z=0

3.2. The prescribed surface heat flux (PHF case)

The appropriate boundary conditions are

or r\2
—ke= qw—D(i) at z =0, (91)
T—T, asz— o0. (92)
Taking
D /2 |v
T—To==(-) /=
=2 (5) /5. (93)

the resulting problem consists of Eq. (56) with the follow-
ing boundary conditions:

g =-1,
gl =0 asn— oo (94)

atn =0,

where the Eckert number here is defined as
kB*I* B
= \/, (95)
Dc, Vv

3.2.1. HAM solution

We note that solution here is the same as in the previous
subsection except that now the recurrence relation in Eq.
(72) is

m+2
0
Ay = AndomAm-11 — § :@mlvl,l
m+2 m+2—n
§ : 0 § : q q q
- n@mn n() @m,n (nvn,O - vn,l) . (96)
n=2 gq=1

The corresponding Mth-order approximation of Egs.
(56) and (94) is

M M+2 M+1 m+2—n
S e ze-w(z Z/LM) )
m=0

m=n—1 k
and totally analytic solution of the heat transfer in the PHF
case is
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Fig. 1. h-Curves are plotted for the functions £, 0 and g. (a) Flow analysis, (b) PST case, and (c) PHF case.
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Fig. 2. Variation of 7, , with increase in parameter K. (a) Flow analysis, (b) PST case, and (c) PHF case.
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g =>_ g,
m=0
M2 M+1 m+2—n
= Jim e Y0y Ayt (98)
n=1 m=n—1 k=0

The wall temperature T, is obtained from Eq. (93) as

D /m\2 v
I'—Tw = T (7) Eg(0)~ (99)
a 7%—order app.

4. The convergence of the solution

The explicit, analytic expressions (49), (87) and (98) con-
tain two auxiliary parameters 7%; and %,. As pointed out by
Liao [6], the convergence region and rate of approximations
given by the homotopy analysis method are strongly depen-
dent upon these auxiliary parameters. In Fig. 1(a)—(c) the -
curves are plotted to see the range of admissible values for
the parameters 7, and 7,. Fig. 1(a)—(c) display that the range
for the admissible values for #; and 7, is —1 < 7y, 71, <O0.
Also the series given in Eqgs. (49), (87) and (98) converges

b 7h-order app.

n

Fig. 3. Variation of the dimensionless velocity fields /' and f with increasing second grade parameter K. (a) f’(17) and (b) f().

a Pr=206=15E=0.1

6(n)

Ul

b Pr=206=15E=0.1
1.75

1.5F
1.25

— K=0.0

g(n)

0.75
0.5
0.25

Fig. 4. Variation of the dimensionless temperature profiles 0 and g with increasing second grade parameter K. (a) 0(17), PST case and (b) g(), PHF case.

a K=01, 6=15 E=0.1

—— Pr=10

b K=01, 6=15 E=0.1

8 —— Pr=1.0

9(n)

10

Fig. 5. Variation of the dimensionless temperature profiles § and g with increasing Prandtl number Pr. (a) 6(5), PST case and (b) g(17), PHF case.
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in the whole region of 1, when %; = —0.3, /i, = —0.6 for the
PST case and 7%, = —0.9 for the PHF case.

Further Fig. 1(a) shows that range for the admissible
values for 7, increases with increase in order of approxima-
tion. It is also found that the series (49) of f{n) converges
faster than that of the 6(#) and g(#). This is due to the fact
that the non-linearity in the later case is stronger than the
former. Fig. 2 indicates the A-curves for two different values
of the second grade parameter K. It is observed that the
interval for 7; increases by increasing K. Whereas in the
case of 7, it is going towards zero as we increase the param-
eter K.

5. Results and discussion

This section deals with the variations of K, 6, Pr and E.
For this purpose Figs. 3-7 have been sketched. In order to
see the variation of second grade parameter K on velocity
components # and w, the main emphasis has been given to
plot the graphs forf(n) and f{n) in Fig. 3. The graphs for
the variation of K, 6, Pr and E on the temperature are
shown in Figs. 4-7. In these figures, 0(#) is the temperature
variation that corresponds to the PST case and g(#) is the
temperature variation for the PHF case. Moreover, the
variations of K on the skin friction coefficient have been
listed in Tables 1 and 2 have been prepared to show the var-

a K=01, 6=15 Pr=20
1.5

1.25

6 ()

0.75
0.5
025

Table 1

Values of the skin friction coefficient C;Re!/? for #ij = —0.3
K CrRe!/?

0.0 —2.35591

0.1 —3.11952

0.2 —3.80538

0.3 —4.42764

0.4 —4.99863
Table 2

Values of the Nusselt number 7Re,"/29’(0) for K=0.1, i, = —0.75 and
n=-03

Pr E=0.0 E=0.1 E=02 E=03

0.5 —2.61875 —2.85423 —3.08971 —3.32518
1.0 —0.61250 —1.01080 —1.40910 —1.80740
1.5 0.83125 0.34278 —0.14568 —0.63415
2.0 1.71250 1.20652 0.70055 0.19456
2.5 2.03125 1.58042 1.12955 0.67877

iation of Pr and E on the Nusselt number. In Table 3 we
have given the comparison of our results with those given
in Ref. [1]. From the present study, it is concluded that:

e The r-component of velocity and boundary layer thick-
ness increases by increasing K.

b 4 K=0.1, 6=15 Pr=20
AN
35 — E=0.1
8 e E=0.3
2 ----E=05
=
s 2
15 N
AN
1 ‘\\\\\
0.5 sl
2 3 4 5

Fig. 6. Variation of the dimensionless temperature profiles § and g with increasing Eckert number E. (a) 6(5), PST case and (b) g(17), PHF case.

a K=0.1,Pr=25E=01 b K=0.1,Pr=25E=0.1
1.75 8
15
1.25 6
= 1 =
= Z4
= 075 >
0.5 P
0.25
0 0
0 2 4 6 8 10 4 6 8 10
n K

Fig. 7. Variation of the dimensionless temperature profiles 0 and g with increasing parameter . (a) 6(n), PST case and (b) g(r), PHF case.
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Table 3

Illustrating the variation of —f’(0) with K using: (i) exact numerical
integration, (ii) perturbation solution for small X, (iii) asymptotic solution
for large K, (iv) approximate solution for any K and (v) HAM solution for
any K when /; = —0.25

K Exact Perturbation Asymtotic ~Approximate HAM
[1] (1] (1] [1]

0.0 1.17372 1.17372 1.15470 1.17559
0.05 1.14241 1.14198 1.11906 1.14389
0.1 1.11221 1.11024 1.08641 1.11369
0.2 1.05603 1.04677 1.02864 1.05764
0.3 1.00580 0.98329 0.97899 1.00716
04 096115 0.91982 0.93579 0.96195
0.5 0.92140 0.85634 0.89776 0.92167
0.6  0.88586 0.79286 0.86396 0.88597
0.7 0.85393 0.72938 0.83366 0.85446
0.8  0.82507 0.66591 0.66737 0.80632 0.82675
0.9 0.79885 0.60243 0.67642 0.78148 0.80241
1.0 0.77491 0.53895 0.67753 0.75879 0.78098
1.1 0.75295 0.47548 0.67395 0.73795 0.76200
1.2 0.73272 0.41200 0.66756 0.71873 0.74497
1.6 0.66535 0.63124 0.65451 0.68550
2.0 0.61355 0.59310 0.60486 0.61115

e The z-component of velocity increases and boundary
layer thickness decreases for large K.

e An increase in the value of K increases the temperature
to a value n = 1.8 and then decreases the temperature.
But the thermal boundary layer thickness increases by
increasing K.

e By increasing the Prandtl number Pr, the temperature is
found to decrease.

e The influence of E on the temperature is quite opposite
of Pr.

e The effect of the parameter 0 is similar to that of Pr.

e The magnitude of skin friction coefficient increases by
increasing K.

e The Nusselt number decreases by increasing E and fixed
Pr.

e The results obtained by HAM in case of velocity are in
agreement with the numerical results of Ariel [1].

6. Concluding remarks

In this paper, we have considered a problem concerning
the axisymmetric flow and heat transfer analysis of the sec-
ond grade fluid. The solution of the problem is obtained by
using HAM. To carry out heat transfer analysis, the energy
equation has been solved for the prescribed surface temper-
ature and heat flux cases. Analytical solutions for the veloc-
ity and temperature distributions are obtained using an
analytical technique, namely the homotopy analysis
method [5,6]. The convergence of the results are shown.
The results are presented graphically and the effects of
the emerging parameters are seen. The skin friction coeffi-
cient and the Nusselt number are tabulated. The results are
also compared with the numerical results already presented
in the literature [1] and found in excellent agreement.
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