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Abstract

The steady laminar flow and heat transfer of a second grade fluid over a radially stretching sheet is considered. The axisymmetric flow
of a second grade fluid is induced due to linear stretching of a sheet. The heat transfer analysis has been carried out for two heating
processes, namely (i) with prescribed surface temperature (PST-case) and (ii) prescribed surface heat flux (PHF-case). Introducing the
dimensionless quantities the governing partial differential equations are transformed to ordinary differential equations. The developed
non-linear differential equations are solved analytically using homotopy analysis method (HAM). The series solutions are developed
and the convergence of these solutions is explicitly discussed. The analytical expressions for velocity and temperature are constructed
and are shown graphically. The numerical values for the skin friction coefficient and the Nusselt number are entered in tabular form.
Attention has been focused to the variations of the emerging parameters such as second grade parameter, Prandtl number and the Eckert
number. Finally, comparison between the HAM and numerical solutions are also included and found in excellent agreement.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, the viscoelastic fluids are recognized
more appropriate than Newtonian fluids. This is due to
their many practical applications in petroleum drilling,
manufacturing of foods and paper and many other activi-
ties. Specifically, the boundary layer concept of viscoelastic
fluids is of special importance owing to its application in
many engineering problems, among which we cite the pos-
sibility of reducing frictional drag on the hulls of ships and
submarines. Further, flow and heat transfer phenomena
over stretching surface has promising applications in a
number of technological processes including production
of polymer films or thin sheets. Because of the non-linear
nature of the dependence of stresses on the rate of strain
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for viscoelastic fluids, the solutions of flow problems for
these fluids are in general more difficult to obtain. This is
not only true of analytical solutions but even of numerical
solutions. Due to these facts, the flows of viscoelastic fluids
have been a challenging research topic for mathematicians,
physicists and engineers alike.

A literature survey indicated that there has been an
extensive literature available regarding the boundary layer
flow over a planer stretching sheet in various situations.
Such studies include different fluid models, magnetohydro-
dynamic and hydrodynamic cases, with and without heat
transfer analysis. As can be seen from the literature, there
has been relatively scarce information regarding the axi-
symmetric flow over a radial stretching sheet. Recently,
Ariel [1] discussed the axisymmetric flow of a second grade
fluid past a stretching sheet. He found exact, perturbative,
asymptotic and numerical solutions for the problem. To
the best of our information not a single attempt is available
in the literature which describes the axisymmetric flow and
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heat transfer analysis over a radial stretching sheet. This
study will help to fill this gap. The layout of the paper
has been organized as follows:

We start our formulation in Section 2 by defining the
continuity, momentum, constitutive equations and bound-
ary conditions in the cylindrical coordinates. In Section 2.1,
we find the analytic solution for the velocity using HAM
[5–21]. The expression for the skin friction coefficient is
also given in Section 2.2. The energy equation for the ther-
modynamic second grade fluid is presented in Section 3.
Sections 3.1 and 3.2 respectively deal with the boundary
conditions and HAM solutions of the temperature distri-
bution for the prescribed surface temperature case and
the prescribed heat flux case. In Section 4, we show the
convergence of the solution and the behaviour of the con-
vergence on the emerging parameters. In Section 5 the
results relevant to the graphs are presented beside the com-
parison of the HAM results with the numerical results of
[1]. Section 6 synthesis the concluding remarks.
2. Flow analysis

Consider the steady laminar flow of a second grade fluid
over a radial stretching sheet. The sheet is in the plane z = 0
and has stretched velocity proportional to the distance
from the origin. The fluid occupies the half space z > 0.
The constitutive equation for the Cauchy stress in a second
grade fluid is [2–4]

T ¼ �pIþ lA1 þ a1A2 þ a2A2
1; ð1Þ

where the first two kinematic tensors A1 and A2 are

A1 ¼ $Vþ ð$VÞ>;

A2 ¼
dA1

dt
þ A1ð$VÞ þ ð$VÞ>A1;

ð2Þ

in which V is the fluid velocity, d/dt is the material deriva-
tive and a1 and a2 are respectively the viscoelasticity
and cross-viscosity of the fluid. In order to satisfy the ther-
modynamic analysis, the conditions l P 0, a1 P 0,
a1 + a2 = 0 must hold.

For the mathematical modelling, we take cylindrical
polar coordinate system (r, h, z) when flow occurs under
the rotational symmetry. Thus all physical quantities do
not depend upon h i.e. o/oh = 0 and azimuthal component
(v) of velocity V = (u,v,w) vanishes identically. With these
facts the equations which govern the flow are
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and u and w are the velocities in the r- and z-directions,
respectively and q is the fluid density.

The relevant boundary conditions are

u ¼ Br; w ¼ 0; at z ¼ 0;

u! 0 as z!1:
ð10Þ

Let us introduce the following dimensionless quantities

u ¼ Brf 0ðgÞ; w ¼ �2
ffiffiffiffiffiffi
Bm
p

f ðgÞ; g ¼
ffiffiffi
B
m

r
z; K ¼ Ba1

l
;

ð11Þ

where the prime signifies differentiation with respect to g
and B is the proportionality constant relating to the
stretching of the sheet. The mass conservation equation is
automatically satisfied and Eqs. (4) and (9) give the follow-
ing expression for pressure

p ¼ �2Blf 2 � 2Blf 0 þ 2KlB 2ff 00 þ 3f 02 þ Br2

m
f 002

� �
þ p0;

ð12Þ

where p0 is a constant and the ordinary differential equa-
tion for velocities [1]

f 000 � f 02 þ 2ff 00 � Kðf 002 � 2f 0f 000 þ 2ff ivÞ ¼ 0; ð13Þ

The boundary conditions (10) now become

f ¼ 0; f 0 ¼ 1 at g ¼ 0;

f 0 ! 0 as g!1:
ð14Þ
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The non-linear differential Eq. (13) governing the flow
has to be solved subject to the conditions (14) by HAM.

2.1. Homotopy analytic solution

Here, we obtain the analytic and uniformly valid solu-
tion by HAM. For that we use the initial approximation

f0ðgÞ ¼ 1� e�g ð15Þ
and the auxiliary linear operator

L1ðf Þ ¼ f 000 þ f 00; ð16Þ
satisfying

L1½C1gþ C2 þ C3e�g� ¼ 0; ð17Þ
where Ci (i = 1–3) are constants.

The deformation problem at the zeroth-order satisfies

ð1� pÞL1½f ðg; pÞ � f0ðgÞ� ¼ p�h1N1½f ðg; pÞ�; ð18Þ
f ð0; pÞ ¼ 0; f 0ð0; pÞ ¼ 1; f 0ð1; pÞ ¼ 0; ð19Þ

where �h1 and p 2 [0,1] are respectively the auxiliary and
embedding parameters and
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is the non-linear differential operator. For p = 0 and p = 1,
we have

f ðg; 0Þ ¼ f0ðgÞ; f ðg; 1Þ ¼ f ðgÞ: ð21Þ
We note from above equation that the variation of p from 0
to 1 is continuous variation of f(g,p) from f0(g) to f(g). Due
to Taylor’s theorem and Eq. (21) we can write

f ðg; pÞ ¼ f0ðgÞ þ
X1
m¼1

fmðgÞpm; ð22Þ

in which

fmðgÞ ¼
1
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Clearly, the convergence of the series (22) depends on the
auxiliary parameter �h1. Assume that �h1 is selected such that
the series (22) is convergent at p = 1, then due to Eq. (21)
we have

f ðgÞ ¼ f0ðgÞ þ
X1
m¼1

fmðgÞ: ð24Þ

Differentiating m-times the zeroth-order deformation
Eq. (18) with respect to p and then dividing them by m!
and finally setting p = 0 we have the mth-order deforma-
tion problem
L1½fmðgÞ � vmfm�1ðgÞ� ¼ �h1R
f
mðgÞ; ð25Þ

fmð0Þ ¼ f 0mð0Þ ¼ f 0mð1Þ ¼ 0; ð26Þ
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For the solution of the mth-order problem, we use the
symbolic computation software MATHEMATICA up to
first few order of approximation. It is found that the solu-
tion of this problem is
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In order to obtain the recurrence formulae for the coef-
ficients aq

m;n of fm(g), we substitute Eq. (29) in Eq. (25) and
obtain for m P 1, 0 6 n 6 m + 1 and 0 6 q 6 m + 1 � n
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The coefficient Wq
m;n is defined by
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m;n ¼ �h1½vm�n�qþ2dq
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and the coefficients bk
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For the detailed procedure of deriving the above relations
the reader is referred to [11]. With the above recurrence for-
mulae, we can calculate all coefficients ak

m;n using only the
first two

a0
0;0 ¼ 1; a0

0;1 ¼ �1; ð47Þ

given by the initial guess approximations for the function
f(g) in Eq. (15). The corresponding Mth-order approxima-
tion of Eqs. (13) and (14) is then given by
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The explicit, totally analytic solution of the present flow
is
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2.2. Skin friction

The expression for shear stress sw on the surface of the
stretching sheet is defined as

sw ¼ T rzjz¼0 ð50Þ
and the local skin friction coefficient or frictional drag coef-
ficient is

Cf ¼
sw

1
2
qðBrÞ2

: ð51Þ

In terms of dimensionless variables we have

Cf ¼ 2Re�1=2
r ½f 00 gð Þ þ 2Kf2f 0ðgÞf 00ðgÞ � f ðgÞf 000ðgÞg�jg¼0;

ð52Þ

where Rer = Br2/m is the local Reynolds number based on
the length scale r.

3. Heat transfer analysis

The energy equation, corresponding to the axisymmetric
flow of a second grade fluid is
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In above equation T is the temperature, cp is the specific
heat and k is the thermal conductivity. The boundary con-
ditions depend on the heating process.

3.1. The prescribed surface temperature (PST case)

Here

T ¼ T w ¼ T1 þ A
r
l

� �2

at z ¼ 0;

T ! T1 as z!1;
ð54Þ
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where A and l are constants. Defining

hðgÞ ¼ T � T1
T w � T1

; ð55Þ

the governing problem is of the following form
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h¼ 1 at g¼ 0;

h! 0 as g!1; ð57Þ

where Pr = lcp/k, E = B2l2/cpA and d = Br2/m are the
Prandtl number, Eckert number and the local Reynold
number, respectively.

3.1.1. HAM solution

Here the initial guess approximation of h(g) and the cor-
responding auxiliary operator are respectively selected as
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where
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in which �h2 is auxiliary nonzero parameter. For p = 0 and
p = 1, we have

hðg; 0Þ ¼ h0ðgÞ; hðg; 1Þ ¼ hðgÞ: ð64Þ
Obviously as p increases from 0 to 1, h(g,p) varies from
h0(g) to h(g). By Taylor’s theorem and Eq. (64), we have
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and convergence of series (65) depends on �h2. Assume that
�h2 is selected such that the series (65) is convergent at p = 1,
then due to Eq. (64) we can write
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The mth-order deformation problem is
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The solution of the above problem can be expressed as
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Upon making use of the expression given in Eq. (71)
into Eq. (68) yields the following recurrence formulae for
the coefficients Aq

m;n of hm(g):

for m P 1, 0 6 n 6 m + 2 and 0 6 q 6 m + 2 � n:

A0
m;1¼ vmv2mA0

m�1;1�
Xmþ2

n¼2

Xmþ2�n

q¼0

Hq
m;nm

q
n;0; ð72Þ

Ak
m;1¼ vmv2m�kAk

m�1;1�
Xmþ1

q¼k�1

Hq
m;1m

q
1;k ; 16 k6mþ1; ð73Þ

Ak
m;n¼ vmv2mþ1�n�kAk

m�1;n�
Xmþ2�n

q¼k

Hq
m;nm

q
n;k;

26 n6mþ2; 06 k6mþ2�n; ð74Þ

mq
1;k ¼

q!

k!
; 06 k6 qþ2; q P 0; ð75Þ

mq
n;k ¼

Xq�k

p¼0

q!

k!ðn�1Þq�pþ1ðnÞpþ1
;

06 k6 qþ2�n; q P 0; n P 2; ð76Þ

Hq
m;n¼ �h2 vmþ3�n�q Cq

m�1;nþ
4

d
Aq

m�1;nþPrE Kq
m;nþ

12

d
Dq

m;n

� �� �

þ Prð2Pq
m;n�2kq

m;nÞþPrEK cq
m;n�2jq

m;n�
24

d
rq

m;n

� �� �
:

ð77Þ
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The coefficients Pq
m;n, kq

m;n, cq
m;n, jq

m;n and rq
m;n where

m P 1, 0 6 n 6 m + 2, 0 6 q 6 m + 2 � n are defined by

Pq
m;n¼

Xm�1

k¼0

Xminfn;kþ2g

j¼maxf0;n�mþkg

Xminfq;kþ2�jg

i¼maxf0;q�mþkþn�jg
Bi

k;ja
q�i
m�1�k;n�j; ð78Þ

kq
m;n¼

Xm�1

k¼0

Xminfn;kþ2g

j¼maxf0;n�mþkg

Xminfq;kþ2�jg

i¼maxf0;q�mþkþn�jg
Ai

k;jb
q�i
m�1�k;n�j; ð79Þ

cq
m;n¼

Xm�1

k¼0

Xk

l¼0

Xminfn;kþ2g

r¼maxf0;n�mþkg

Xminfq;kþ2�rg

s¼maxf0;q�mþkþn�rg

Xminfp;lþ1g

j¼maxf0;r�kþl�1g

�
Xminft;lþ1�jg

i¼maxf0;s�kþlþr�jþ1g
ci

l;jc
t�i
k�l;p�jb

q�t
m�1�k;n�p; ð80Þ

jq
m;n¼

Xm�1

k¼0

Xk

l¼0

Xminfn;kþ2g

r¼maxf0;n�mþkg

Xminfq;kþ2�rg

s¼maxf0;q�mþkþn�rg

Xminfp;lþ1g

j¼maxf0;r�kþl�1g

�
Xminft;lþ1�jg

i¼maxf0;s�kþlþr�jþ1g
di

l;jc
t�i
k�l;p�ja

q�t
m�1�k;n�p; ð81Þ

rq
m;n¼

Xm�1

k¼0

Xk

l¼0

Xminfn;kþ2g

r¼maxf0;n�mþkg

Xminfq;kþ2�rg

s¼maxf0;q�mþkþn�rg

Xminfp;lþ1g

j¼maxf0;r�kþl�1g

�
Xminft;lþ1�jg

i¼maxf0;s�kþlþr�jþ1g
ci

l;jb
t�i
k�l;p�ja

q�t
m�1�k;n�p; ð82Þ

where the related coefficients Bk
m;n and Ck

m;n are given by

Bk
m;n ¼ðk þ 1ÞAkþ1

m;n � nAk
m;n; ð83Þ

Ck
m;n ¼ðk þ 1ÞBkþ1

m;n � nBk
m;n: ð84Þ

Using the above recurrence formulae, we can calculate
all coefficients Ak

m;n using only the first two

A0
0;0 ¼ 0; A0

0;1 ¼ 1; ð85Þ

given by the initial guess approximations for the function h
(g) in Eq. (58). The corresponding Mth-order approxima-
tion of Eqs. (56) and (57) is

XM

m¼0

hmðgÞ ¼
XMþ2

n¼1

e�ng
XMþ1

m¼n�1

Xmþ2�n

k¼0

Ak
m;ng

k

 !
: ð86Þ

Therefore the explicit, totally analytic solution of the
heat transfer in the PST case

hðgÞ ¼
X1
m¼0

hmðgÞ

¼ lim
M!1

XMþ2

n¼1

e�ng
XMþ1

m¼n�1

Xmþ2�n

k¼0

Ak
m;ng

k

 !" #
ð87Þ

and the dimensionless temperature gradient at the wall is
given by

h0ð0Þ ¼
X1
m¼0

h0mð0Þ ¼ lim
M!1

XMþ2

n¼1

XMþ1

m¼n�1

ðA1
m;n � A0

m;nÞ
" #

: ð88Þ
The dimensionless heat transfer rate at the wall, charac-
terized by the Nusselt number Nu, is given by

Nu ¼
�koT

oz

		
z¼0

kðT w � T1Þ
r ¼ �Re1=2

r h0ð0Þ ð89Þ

and the local heat flux can be expressed as

qw ¼ �k
oT
oz

				
z¼0

¼ �kA
r
l

� �2
ffiffiffi
B
m

r
h0ð0Þ: ð90Þ

The expressions in Eqs. (87) and (89) are evaluated for the
different values of the emerging parameters and are dis-
cussed. We will now discuss the case of the prescribed heat
flux in the next subsection.
3.2. The prescribed surface heat flux (PHF case)

The appropriate boundary conditions are

� k
oT
oz
¼ qw ¼ D

r
l

� �2

at z ¼ 0; ð91Þ

T ! T1 as z!1: ð92Þ

Taking

T � T1 ¼
D
k

r
l

� �2
ffiffiffi
m
B

r
gðgÞ; ð93Þ

the resulting problem consists of Eq. (56) with the follow-
ing boundary conditions:

g0ðgÞ ¼ �1; at g ¼ 0;

gðgÞ ¼ 0 as g!1: ð94Þ

where the Eckert number here is defined as

E ¼ kB2l2

Dcp

ffiffiffi
B
m

r
: ð95Þ
3.2.1. HAM solution

We note that solution here is the same as in the previous
subsection except that now the recurrence relation in Eq.
(72) is

A0
m;1 ¼ vmv2mA0

m�1;1 �
Xmþ2

q¼0

Hq
m;1m

q
1;1

�
Xmþ2

n¼2

nH0
m;nm

0
n;0 þ

Xmþ2�n

q¼1

Hq
m;nðnmq

n;0 � mq
n;1Þ

" #
: ð96Þ

The corresponding Mth-order approximation of Eqs.
(56) and (94) is

XM

m¼0

gmðgÞ ¼
XMþ2

n¼1

e�ng
XMþ1

m¼n�1

Xmþ2�n

k¼0

Ak
m;ng

k

 !
ð97Þ

and totally analytic solution of the heat transfer in the PHF
case is
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gðgÞ ¼
X1
m¼0

gmðgÞ

¼ lim
M!1

XMþ2

n¼1

e�ng
XMþ1

m¼n�1

Xmþ2�n

k¼0

Ak
m;ng

k

 !" #
: ð98Þ
The wall temperature Tw is obtained from Eq. (93) as

T � T1 ¼
D
k

r
l

� �2
ffiffiffi
m
B

r
gð0Þ: ð99Þ
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4. The convergence of the solution

The explicit, analytic expressions (49), (87) and (98) con-
tain two auxiliary parameters �h1 and �h2. As pointed out by
Liao [6], the convergence region and rate of approximations
given by the homotopy analysis method are strongly depen-
dent upon these auxiliary parameters. In Fig. 1(a)–(c) the �h-
curves are plotted to see the range of admissible values for
the parameters �h1 and �h2. Fig. 1(a)–(c) display that the range
for the admissible values for �h1 and �h2 is �1 6 �h1, �h2 < 0.
Also the series given in Eqs. (49), (87) and (98) converges
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Table 1
Values of the skin friction coefficient Cf Re1=2

r for �h1 = �0.3

K Cf Re1=2
r

0.0 �2.35591
0.1 �3.11952
0.2 �3.80538
0.3 �4.42764
0.4 �4.99863

Table 2
Values of the Nusselt number �Re�1=2

r h0ð0Þ for K = 0.1, �h2 = �0.75 and
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in the whole region of g, when �h1 = �0.3, �h2 = �0.6 for the
PST case and �h2 = �0.9 for the PHF case.

Further Fig. 1(a) shows that range for the admissible
values for �h1 increases with increase in order of approxima-
tion. It is also found that the series (49) of f(g) converges
faster than that of the h(g) and g(g). This is due to the fact
that the non-linearity in the later case is stronger than the
former. Fig. 2 indicates the �h-curves for two different values
of the second grade parameter K. It is observed that the
interval for �h1 increases by increasing K. Whereas in the
case of �h2 it is going towards zero as we increase the param-
eter K.
�h1 = �0.3

Pr E = 0.0 E = 0.1 E = 0.2 E = 0.3

0.5 �2.61875 �2.85423 �3.08971 �3.32518
1.0 �0.61250 �1.01080 �1.40910 �1.80740
1.5 0.83125 0.34278 �0.14568 �0.63415
2.0 1.71250 1.20652 0.70055 0.19456
2.5 2.03125 1.58042 1.12955 0.67877
5. Results and discussion

This section deals with the variations of K, d, Pr and E.
For this purpose Figs. 3–7 have been sketched. In order to
see the variation of second grade parameter K on velocity
components u and w, the main emphasis has been given to
plot the graphs for f

0
(g) and f(g) in Fig. 3. The graphs for

the variation of K, d, Pr and E on the temperature are
shown in Figs. 4–7. In these figures, h(g) is the temperature
variation that corresponds to the PST case and g(g) is the
temperature variation for the PHF case. Moreover, the
variations of K on the skin friction coefficient have been
listed in Tables 1 and 2 have been prepared to show the var-
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iation of Pr and E on the Nusselt number. In Table 3 we
have given the comparison of our results with those given
in Ref. [1]. From the present study, it is concluded that:

� The r-component of velocity and boundary layer thick-
ness increases by increasing K.
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Table 3
Illustrating the variation of �f00(0) with K using: (i) exact numerical
integration, (ii) perturbation solution for small K, (iii) asymptotic solution
for large K, (iv) approximate solution for any K and (v) HAM solution for
any K when �h1 = �0.25

K Exact
[1]

Perturbation
[1]

Asymtotic
[1]

Approximate
[1]

HAM

0.0 1.17372 1.17372 1.15470 1.17559
0.05 1.14241 1.14198 1.11906 1.14389
0.1 1.11221 1.11024 1.08641 1.11369
0.2 1.05603 1.04677 1.02864 1.05764
0.3 1.00580 0.98329 0.97899 1.00716
0.4 0.96115 0.91982 0.93579 0.96195
0.5 0.92140 0.85634 0.89776 0.92167
0.6 0.88586 0.79286 0.86396 0.88597
0.7 0.85393 0.72938 0.83366 0.85446
0.8 0.82507 0.66591 0.66737 0.80632 0.82675
0.9 0.79885 0.60243 0.67642 0.78148 0.80241
1.0 0.77491 0.53895 0.67753 0.75879 0.78098
1.1 0.75295 0.47548 0.67395 0.73795 0.76200
1.2 0.73272 0.41200 0.66756 0.71873 0.74497
1.6 0.66535 0.63124 0.65451 0.68550
2.0 0.61355 0.59310 0.60486 0.61115

84 T. Hayat, M. Sajid / International Journal of Heat and Mass Transfer 50 (2007) 75–84
� The z-component of velocity increases and boundary
layer thickness decreases for large K.
� An increase in the value of K increases the temperature

to a value g = 1.8 and then decreases the temperature.
But the thermal boundary layer thickness increases by
increasing K.
� By increasing the Prandtl number Pr, the temperature is

found to decrease.
� The influence of E on the temperature is quite opposite

of Pr.
� The effect of the parameter d is similar to that of Pr.
� The magnitude of skin friction coefficient increases by

increasing K.
� The Nusselt number decreases by increasing E and fixed

Pr.
� The results obtained by HAM in case of velocity are in

agreement with the numerical results of Ariel [1].

6. Concluding remarks

In this paper, we have considered a problem concerning
the axisymmetric flow and heat transfer analysis of the sec-
ond grade fluid. The solution of the problem is obtained by
using HAM. To carry out heat transfer analysis, the energy
equation has been solved for the prescribed surface temper-
ature and heat flux cases. Analytical solutions for the veloc-
ity and temperature distributions are obtained using an
analytical technique, namely the homotopy analysis
method [5,6]. The convergence of the results are shown.
The results are presented graphically and the effects of
the emerging parameters are seen. The skin friction coeffi-
cient and the Nusselt number are tabulated. The results are
also compared with the numerical results already presented
in the literature [1] and found in excellent agreement.
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